Jacobi-Calculator
This calculator uses the Jacobi-Transformation algorithm to compute the eigenvalues and eigenvectors of a symmetric matrix. A visual explanation of the workings of the algorithm can be found in this video.
To find eigenvalues and eigenvectors, click on non-zero off-diagonal elements until a diagonal matrix remains. The eigenvectors table then contains a set of orthonormal eigenvectors.
| Display digits: |
Symmetric matrix
|
{{cell.column}} |
| {{row.row}} | {{cell.value.toFixed(digits)}} |
Eigenvectors
| EV {{cell.column}} | |
| {{cell.value.toFixed(digits)}} |
Create a new matrix
To create an store a symmetric matrix, use the table creator function in the Gauß-calculator, then return to this calculator with the same id or using the link provided on the Gauß-calculator page.
Create a reandom matrix with rows.